Техническое описание

Регулятор перепада давлений с ручным ограничением расхода AFPB(-F)/VFQ2 (PN 16, 25, 40)

AFPB/VFQ2 — с переменной настройкой, для монтажа на обратном трубопроводе **AFPB-F/VFQ2** — с фиксированной настройкой, для монтажа на обратном трубопроводе

Описание и область применения

AFPB(-F)/VFQ2 — автоматический регулятор перепада давлений с ручным ограничением расхода для использования в системах централизованного теплоснабжения. При повышении перепада давлений на регуляторе клапан закрывается.

Регулятор состоит из регулирующего фланцевого клапана с настраиваемым дроссельным клапаном для ограничения расхода, регулирующего блока с диафрагмой и пружины для настройки перепада давлений.

Основные характеристики

- DN = 15-125 mm.
- PN = 16, 25, 40 бар.
- Диапазоны настройки (AFPB): 0,1–0,7 бар; 0,15–1,5 бар.
- Фиксированная настройка (AFPB-F): 0,2 бар; 0,5 бар.
- Температура регулируемой среды (вода или 30 % водный раствор гликоля): 2–150°С (200°С)
- Присоединение к трубопроводу: фланцевое.

Номенклатура и кодовые номера для заказа

Пример заказа

Регулятор перепада давлений AFPB/VFQ2; DN = 65 мм, PN = 25 бар, перемещаемая среда — вода при $T_{\text{макс.}}$ = 150 °C; перепад давлений — 0,1–0,7 бар:

- клапан VFQ 2 DN = 65 мм 1 шт., кодовый номер **065B2673**;
- регулирующий блок AFP 1 шт., кодовый номер **003G1017**;
- импульсная трубка AFPB, 1 компл., кодовый номер **003G1361**;
- импульсная трубка AF 1 компл., кодовый номер **003G1391**.

Составляющие регулятора поставляются отдельно.

Клапан VFQ2 (металлическое уплотнение затвора)

Эскиз	DN,	V3/	_	۰٫	Кодовый номер				
ЭСКИЗ	мм	K _{vs} , м ³ /ч		.c., C	PN = 16 бар	PN = 25 бар	PN = 40 бар		
	15	4,0	150	200*	065B2654	065B2667	065B2677		
	20	6,3	150	200*	065B2655	065B2668	065B2678		
п	25	8,0	150	200*	065B2656	065B2669	065B2679		
	32	16	150	200*	065B2657	065B2670	065B2680		
	40	20 150	150	200*	065B2658	065B2671	065B2681		
<u> </u>	50	32	150	200*	065B2659	065B2672	065B2682		
	65	50	150 200*		065B2660	065B2673	065B2683		
F	80	80	150	200*	065B2661	065B2674	065B2684		
	100	125	150	200*	065B2662	065B2675	065B2685		
	125	160	150	200*	065B2663	065B2676	065B2686		

^{*}Свыше 150 °С следует применять клапаны PN 25, 40 и только с охладителем импульса давления со стороны подающего трубопровода.

Регулирующий блок АГРВ(-F)

Эскиз	Диапазон регулируемого перепада давлений ΔР _{рег} , бар	Кодовый номер
	0,15–1,5	003G1016
THROUGH	0,1-0,7	003G1017
	0,2	003G1026
	0,5	003G1027

Номенклатура и кодовые номера для заказа

(продолжение)

Пример заказа

Регулятор перепада давлений AFPB/VFQ2; DN = 65 мм, PN = 25 бар, перемещаемая среда — вода при $T_{\text{макс.}} = 200 \, ^{\circ}\text{C}; регулируемый пере$ пад давлений — 0,1–0,7 бар:

- клапан VFQ 2, DN = 65 мм 1 шт., кодовый номер **065В2673**;
- регулирующий блок AFP 1 шт., кодовый номер **003G1017**;
- импульсная трубка AF 2 компл., кодовый номер **003G1391**;
- импульсная трубка AFPB 1 шт., кодовый номер 003G1362;
- охладитель импульса давления V1 — 1 шт., кодовый номер 003G1392.

Составляющие регулятора поставляются отдельно.

Внутренняя импульсная трубка AFPB Ø10×0,8 мм из нержавеющей стали

Эскиз	DN, mm	Кодовый номер
	15	00261255
	20	003G1355
	25	00261257
	32	003G1357
	40	003G1359
	50	003G1360
	65	003G1361
	80	00301301
	100	003G1363
	125	003G1364

Принадлежности

Эскиз	Тип	Описание	Кол-во при заказе, шт.	Кодовый номер
	Охладитель V1 (емкость 1 л)	С компрессионными фитингами для трубки Ø10 мм	1	003G1392
().n	Импульсная трубка АF	Медная трубка Ø10×1×1500 мм; резьб. ниппель G ¼ ISO 228; втулка (2 шт.)	1 компл.*	003G1391
	Компрессионный фитинг**	Для подключения импульсной трубки Ø10 мм к регулирующему блоку, G ¼		003G1468
	Соединительная деталь KF3	Для комбинации клапана с регулирую- щими блоками и электроприводами	По необходи-	003G1441
	Соединительная деталь KF2	Для комбинации клапана и регуляторов температуры	мости	003G1440
	Запорный клапан	Для импульсной трубки Ø10 мм		003G1401

^{*}Два комплекта при необходимости установки охладителя импульса давления.
**Фитинг состоит из ниппеля, уплотнительного кольца и втулки.

Технические характеристики

Клапан VFO2

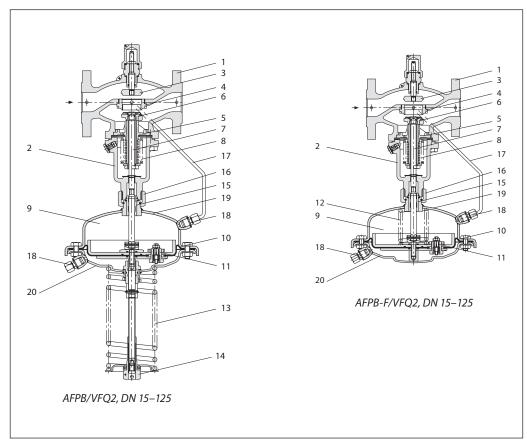
Условный проход DN, мм			15	20	25	32	40	50	65	80	100	125	
Пропускная способность K _{vs} , м³/ч			4	6,3	8	16	20	32	50	80	125	160	
Диапазон	ΔP _{per} = 0,2 бар	ΔР _{сист} = 0,1 бар	ΔР _{др.} = 0,1 бар	0,05- 1,4	0,15–2,1	0,25–2,5	0,4-5	0,6-6,5	0,9-10	2–16	3,5–25	6,5-40	11–50
расхода, м ³ /ч ¹⁾	$\Delta P_{per} = 0.5 \text{ fap}$	ΔР _{сист} = 0,3 бар	$\Delta P_{\rm gp.} = 0.2 \text{Gap}$	0,05-2	0,15-3	0,25-4	0,4-7	0,6-11	0,9–16	2–28	3,5-40	6,5-63	11-80
WI / ¬I	ΔP _{per} = 1,0 бар	ΔР _{сист} = 0,5 бар	$\Delta P_{\rm gp.} = 0.5 \text{Gap}$	0,05-3	0,15-4,5	0,25-6	0,4-10	0,6–16	0,9-24	2-40	3,5-58	6,5-90	11–120
Коэффици	ент начала кави	тации Z		0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35
Макс. пере	епад давления	PN = 16 6ap		16	16	16	16	16	16	16	16	15	15
	е ΔР _{макс.} , бар	PN = 25, 40 бар		20	20	20	20	20	20	20	20	15	15
Условное д	давление PN, ба	ıp		16, 25 или 40 бар, фланцы по DIN 2501									
Макс. темг	пература			2–150°C (200°C) ²⁾									
Перемеща	аемая среда			Вода или 30 % водный раствор гликоля									
Протечка	через закрытый	і клапан, % от К	vs.	0,03									
Устройств	о разгрузки дав	зления		Сильфон из нерж. стали, мат. № 1.4571									
		PN = 1	I6 бар	Серый чугун EN-GJL-250 (GG-25)									
Материал корпуса клапана		PN = 25 бар		Высокопрочный чугун EN-GJS-400 (GGG-40.3)									
iviariaria		PN = 40 бар		Сталь GP240GH (GS-C 25)									
Материал уплотнения затвора			Нерж. сталь, мат. № 1.4421										
Конус клапана			Нерж. сталь, мат. № 1.4404										

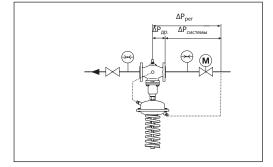
 $^{^{1)}}$ Максимальный расход зависит от перепада давлений в системе $\Delta P_{\text{системы}}$

 $[\]Delta P_{\rm gp.}$ — перепад давлений на дроссельном клапане — ограничителе расхода.

 $[\]Delta P_{\rm др.\, Makc.}^{\rm T.m.}$ — максимальный перепад давлений на дроссельном клапане — ограничителе расхода.

 $[\]Delta P_{\text{per}}$ — заданный перепад давлений.

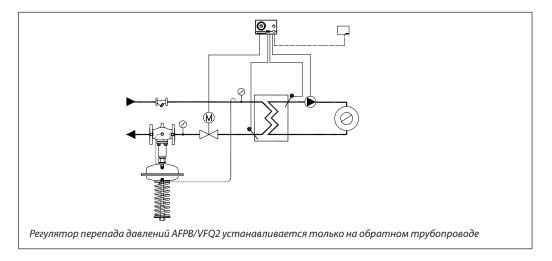

²⁾ Для клапанов PN 25, 40 с охладителем импульса давлений.


Регулирующий блок АГРВ(-F)

Площадь регулир. диафрагмы, см ²		250			
Значения фиксированной настройки пер давлений, бар (для AFPB-F)	епада	0,2; 0,5			
Диапазоны настройки давления для	красный	0,15–1,5			
соотв. цветов пружины ∆Р _{рег} , бар (для AFPB)	желтый	0,1–0,7			
Макс. рабочее давление PN, бар		25			
Корпус регулирующего блока		Оцинкованная сталь с покрытием (мат. № 1.0338)			
Регулирующая диафрагма		EPDM с волоконным армированием			
Импульсная трубка		Нержавеющая сталь Ø10×0,8 мм или медь Ø10×1 мм, резьб. штуцер G ¼ ISO 228			
Охладитель импульса давления		Сталь с лаковым покрытием, емкость 1 л (V1). Устанавливается на импульсных трубках при температуре свыше 150 °C			

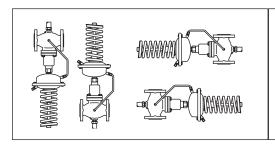
Устройство и принцип действия

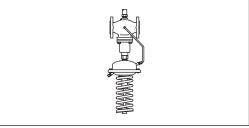
- 1 корпус клапана;
- 2 крышка клапана;
- 3 дроссельный клапан ограничитель расхода;
- 4 седло клапана;
- 5 клапанная вставка;
- 6 конус клапана, разгруженный по давлению;
- 7 шток клапана;
- 8 сильфон для разгрузки клапана по давлению;
- 9 регулирующий блок;
- 10 регулирующая диафрагма;
- 11 встроенный предохранительный клапан;
- 12 встроенная регулирующая пружина;
- 13 настроечная пружина регулятора перепада давлений;
- 14 настроечная гайка с возможностью опломбирования:
- 15 шейка регулирующего блока;
- 16 соединительная гайка;
- 17 импульсная трубка;
- 18 компрессионный фитинг для импульсной трубки;
- верхняя часть регулирующего блока;
- 20 нижняя часть регулирующего блока.



Полный перепад давлений ΔP_{per} , поддерживаемый регулятором, состоит из перепада давлений ΔP_{gp} . на дроссельном клапане — ограничителе расхода и перепада давлений на системе $\Delta P_{cистемы}$ (клапан с регулирующим блоком). Полный перепад давлений передается в камеру диафрагмы через импульсные трубки, что создает усилие, сбалансированное усилием пружины.

Пример применения


Регулятор перепада давлений AFPB/VFQ2 устанавливается только на обратном трубопроводе.



Монтажные положения

Регуляторы DN = 15-80 мм с температурой перемещаемой среды до 120 °C могут быть установлены в любом положении.

Регуляторы с клапанами DN = 100–125 мм или с клапанами любого диаметра при температуре перемещаемой среды свыше 120 °C должны быть установлены на горизонтальных трубопроводах регулирующим блоком вниз.

Импульсные трубки должны устанавливаться между подающим трубопроводом и регулирующим блоком.

При использовании перемещаемой среды с температурой от 150 до 200 °С на импульсной трубке, идущей к подающему трубопроводу, должен устанавливаться охладитель импульса давления.

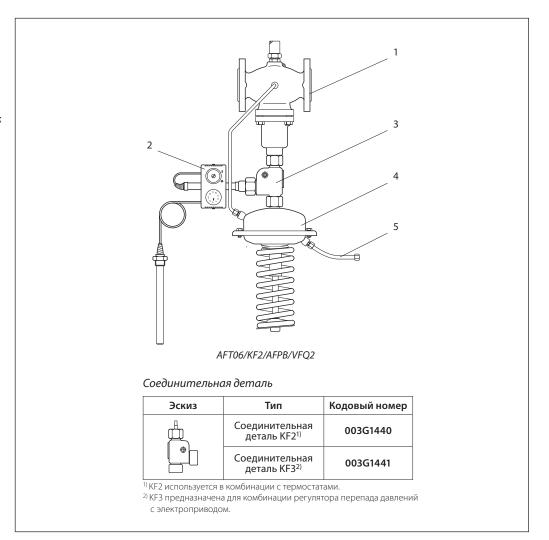
В разделе «Принадлежности» представлены импульсные трубки АF, которые могут быть использованы для подключения охладителя.

Настройка регулятора

Регулятор перепада давлений настраивается с помощью изменения сжатия настроечной пружины. Для настройки на требуемое значение необходимо вращать настроечную гайку и следить за показаниями манометров.

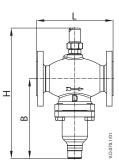
Для ограничения расхода используется настроечная рукоятка на корпусе клапана. При настройке необходимо следить за показаниями теплосчетчиков.

Комбинированный регулятор


- 1 клапан VFQ2;
- 2 регулятор температуры AFT06, 26, 17, 27*;
- 3 соединительная деталь КF2;
- 4 регулирующий блок АГРВ;
- 5 импульсная трубка АҒ.

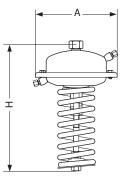
Пример заказа

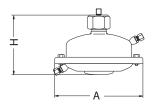
Регулятор перепада давлений AFT06/AFPB/VFQ2 DN = 65 мм, PN = 25 бар, перемещаемая среда — вода при $T_{\text{макс.}}$ = 150 °C, регулируемый перепад давлений — 0,1–0,7 бар, диапазон регулируемых температур — 20–90 °C:


- клапан VFQ2, DN = 65 мм —1 шт., кодовый номер065B2673;
- регулирующий блок AFPB 1 шт., кодовый номер **003G1017;**
- регулятор температуры AFT06 — 1 шт., кодовый номер **065-4391;**
- соединительная деталь KF2 1 шт., кодовый номер **003G1397**;
- импульсная трубка AF 2 компл., кодовый номер **003G1391.**

Составляющие регулятора поставляются отдельно.

^{*}См. техническое описание AFT06.

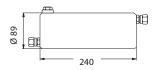

Габаритные и присоединительные размеры



VFQ DN 15-125

Клапан VFQ2

D	N, мм	15	20	25	32	40	50	65	80	100	125
L	_, MM	130	150	160	180	200	230	290	310	350	400
Е	3, мм	213	213	239	239	241	241	276	276	381	381
Н	Н, мм	337	337	374	374	393	393	440	440	575	575
Mac-	PN 16/25	0	9	10.5	12.5	15.5	10 5	28,5	31	61	71
са, кг	PN 40	8	9	10,5	12,5	15,5	18,5	31	34	63	72



Регулирующий блок АГРВ

Площадь регулирующей диафрагмы, см ²	250
А, мм	263
Н, мм	150
Масса, кг	9

Регулирующий блок AFPB-F

Площадь регулируемой диафрагмы, см ²	250
А, мм	263
Н, мм	160
Масса, кг	9

Охладитель импульса давления V1

Соединительная деталь KF2, KF3